
CSE 341 Section 8 Worksheet

1. What do the following Ruby expressions do?

For example: x+2 means sending message + to x with argument 2

a. octopus.swim("fast")

b. octopus.swim "fast"

c. octopus.tentacles = 8

d. Aquarium.new("clownfish")

e. ["clown", "fish"].each {|s| puts s}

f. [1,2,3].map {|j| j*10}

g. sum=0
4.times {sum=sum+10}

2. Write a Ruby class Book, which has fields for title and author. When you create a new
instance of book you should give values for those fields. Also define getters (but not setters) for
them.

Then write a method called bookinfo that takes a block which takes two arguments, first
argument is the title of the book, second is the name of the author. Then the block prints (using
puts) a string saying the name and author of the Book object. BookInfo should call the block
with its title and author fields.

For example, if we have a book object bk title “Ruby intro” and author “Alan”, calling

bk.bookinfo {...}

should generate the output:

title is Ruby intro, author is Alan

Suppose we are going to write bookinfo_closure, which requires passing in something that
represents a closure (recall blocks are not closures). What are the lines that we should change to
make it work?

3. Write a class Delay that implements delays (like the delay function in Racket). The following
code shows how it should work:

n = 0
d = Delay.new {n=n+1; 3+4}
d.force
d.force
v = d.force
e = Delay.new {1/0}

After we evaluate these statements v should be 7, but n should only be 1 (since we only evaluate
the block once). Further, since we never force e, we shouldn’t get a divide-by-zero error.

4.

class Beverage
 def initialize(price)
 @price=price
 end

 def more_expensive(a)
 return @price > a.price
 end
 attr_reader :price
end
class Soda < Beverage
 def initialize(sugar,price)
 @sugar = sugar
 @price = price
 end

 def healthier(a)
return @sugar < a.sugar

 end
 attr_reader :price, :sugar
end

class Beer
 def initialize(price)
 @price = price
 end

 def mix(a)
 @sugar = a.sugar
 @price += a.price
 end
 attr_reader :price, :sugar
end

Suppose we have following bindings:

beer = Beer.new(5)
soda = Soda.new(10, 2.5)
beverage = Beverage.new(0.5)

Decide whether each of the following statement is valid or not:

a) beverage.more_expensive(beer)
b) soda.healthier(beverage)
c) beer.more_expensive(soda)
d) beer.sugar
e) soda.healthier(beer)
f) beer.mix(soda)
g) soda.healthier(beer)
5. The following deal with the MyList linked-list class, which you should download/copy into a
text file from the “blocks_inheritance” file from the course webpage.

a. Write a filter_block method that acts like Haskell’s filter function, using blocks. In

other words, write a method that takes in a block and returns a new MyList object with
all the elements of the self object that return true when passed into the block.

b. Write a filter_proc method that acts like filter_block, but explicitly takes in a proc
instead of a block.

c. Write some code to test each of the above methods in the same file. Don’t write actual

unit tests; instead, write a to_s method for MyList and then use puts to print the result
of multiple tests when running the file. (In other words, this is just practice for
writing/using procs and blocks in ruby.)

6. This will again use the blocks_inheritance file, but will involve the Point classes. Define a

PointCircle class that represents a circle using a point object that represents a circle whose
center is at the origin and which takes in a point which lies somewhere on the edge of the circle
(in other words, the radius of the circle is the distance from the origin to the point). Clients

should be able to access the radius of the circle with a method in PointCircle. What kind of

Object do you need to pass into PointCircle? Is PointCircle a Point?

